
UCRL-WEB-201527

POE User Guide

POE User Guide - 1

Table of Contents

Preface 3
Introduction 4

What POE Is 5
What POE Does 5

POE Terminology 6
Impact on Programming 9
Understanding SP Configuration 11

Local Reporting Tools 12
JS (Pool Summary) 12
JU (Node Usage) 12
JJ (Job Features) 13
LLSTATUS (Node Features) 13
SPJSTAT (Job Status) 14

Establishing Authorization 15
Compiling and Linking Parallel Programs 16

Relevant Compilers 16
Relevant Compiler Options 17

Setting Up the Execution Environment 19
Setting POE Environment Variables 20
Local Defaults 21
Basic POE Environment Variables 22

Tasks per Node 22
Node Allocation 23
Task Communications 24
Examples Using Basic POE Variables 25

Other POE Environment Variables 26
Running Under POE 31

Execute Lines 31
Job Termination 32
Pitfalls 33

Parallel Performance Benchmarks 34
Disclaimer 36
Keyword Index 37
Alphabetical List of Keywords 38
Date and Revisions 39

POE User Guide - 2

Preface

Scope: This guide introduces the role and background concepts for IBM's Parallel Operating
Environment (POE), then explains POE's impact on programming, how to discover
relevant features of your SP system configuration, how to compile parallel programs
for use under POE, how to set up the execution environment appropriately, and how
to run programs (parallel and serial) under POE (with warnings about known pitfalls).
Some sections of this guide closely reflect corresponding sections of a tutorial on
POE prepared and presented to LC users by Blaise Barney.

Availability: POE is an IBM product available at LC on IBM SP machines (Blue, White, Frost,
and Blue-Pacific S).

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at

 OCF: http://www.llnl.gov/LCdocs/poe/poe.pdf
 SCF: https://lc.llnl.gov/LCdocs/poe/poe_scf.pdf

POE User Guide - 3

http://www.llnl.gov/LCdocs/poe/poe.pdf

Introduction
This POE Users Guide introduces the key features of IBM's Parallel Operating Environment (POE),

the framework for developing and running parallel (and even serial) programs on IBM SP machines such
as Blue, White, and Blue-Pacific S.

This section explains what POE is and summarizes its role in managing parallel programs. Other
sections of this guide then discuss programming constraints, how to discover relevant SP configuration
features, compiling parallel programs, setting up the execution environment (by using relevant environment
variables), and running your parallel code on the IBM machines.

IBM publishes much that directly or indirectly explains POE behavior. LC's IBM Documentation
Directory is a good place to find comparative summaries of the most LC-relevant vendor publications,
with links to online sources. Consult this open-network URL:

OCF: http://www.llnl.gov/LCdocs/ibmdir

As Linux (the open-source version of UNIX) becomes the most important operating system on LC's
nonASCI production computers, AIX/POE users may have questions about AIX/Linux differences and
compatibilities. While proprietary IBM (AIX) system software (such as POE) will clearly not be available
under Linux, the status of relevant locally developed utilities (such as HTAR) and even of "standard" but
differently implemented UNIX tools (such as CP) is often not easy to predict. POE users concerned about
moving code to or from LC's Linux systems should therefore consult the Linux Differences (URL:
http://www.llnl.gov/LCdocs/linux) guide for an overt, systematic review of important Linux features at
LC. For a summary of the design goals and service enhancements added to LC's local version of Linux,
consult the manual CHAOS: Linux from Livermore. (URL: http://www.llnl.gov/LCdocs/chaos) For
information on SLURM, the resource manager that takes the place of LoadLeveler on LC's Linux (CHAOS)
clusters, consult the SLURM Reference Manual. (URL: http://www.llnl.gov/LCdocs/slurm)

Other high-performance computer centers also run IBM SP machines with POE and also have developed
local guidebooks of procedural and programming advice. One such book that is publicly shared is Juha
Haataja and Tiina Kupila (Eds.), Guide to the IBM SP Supercomputer (2nd ed., 2001, 102 pages), published
by CSC (the Finnish national scientific computing center), and available at

 Overview: http://www.csc.fi/oppaat/ibmsp
 PDF text: http://www.csc.fi/oppaat/ibmsp/cscibmsp.pdf

POE User Guide - 4

http://www.llnl.gov/LCdocs/ibmdir
http://www.llnl.gov/LCdocs/linux
http://www.llnl.gov/LCdocs/chaos
http://www.llnl.gov/LCdocs/slurm
http://www.csc.fi/oppaat/ibmsp
http://www.csc.fi/oppaat/ibmsp/cscibmsp.pdf

What POE Is
The Parallel Operating Environment (POE) is a distributed-memory, message-passing-based system

designed to manage parallel programs on IBM RS/6000 machines that use the AIX operating system. At
LC, POE is the user environment for the IBM SP computers (Blue, White, Frost, and Blue-Pacific S). POE
is part of IBM's Parallel Environment (PE) software product, and for most purposes the terms POE and
PE are synonymous.

POE consists of a mix of closely related software tools, including:

• Ways to manage your parallel execution environment (special environment variables and
corresponding command-line flags to set them).

• The Message Passing Interface (MPI) library for interprocess communications.

• Scripts for parallel compiling and linking.

• Parallel file-copy utilities and reporting tools, and optional profilers and run-time analysis tools (often
with limited availability).

What POE Does
POE performs many tasks, some transparent to the user, that include:

• Linking the necessary parallel libraries during compilation (via parallel compiler scripts).

• Finding and acquiring the machine nodes for your parallel job (creating your job's "partition").

• Loading your executable onto all nodes acquired for your job (or, if the job is MPMD, loading
multiple executables).

• Handling all input, error messages, and output (STDIN, STDERR, STOUT) between the nodes of
your parallel job.

• Handling all signals for the tasks in your job.

• Providing intertask communication and managing your job's use of processors and network adaptors.

• Retrieving system and job status information when requested, including error messages.

• (Optionally) running serial jobs and shell commands concurrently across many nodes on an SP
machine.

POE User Guide - 5

POE Terminology
This diagram and the definitions below it explain and show the relationships between the most important

POE terms and concepts:

------------- -------------- ---
Node 0		home/login		
-----------	++++++++++	node		
CPU	CPU		------------	
-----------		Partition		
CPU	CPU		Manager	
------------- | Process | |
 -------------- |
------------- + your
| Node 1 | + PARTITION
|-----------|+++++++++++++++++ (nodes where
| CPU | CPU | + your job runs)
|-----------| + |
| CPU | CPU | + |
------------- + |
 + |
------------- + |
Node 2	+	
-----------	+++++++++++++++++	
CPU	CPU	

CPU	CPU	
------------- ---
 * *
 * *
 * *
 * -------------
 * | Node n |
 |-----------|
 | CPU | CPU |
 |-----------|
 | CPU | CPU |

| |
|----------POOL(s)-------------------|
| (administrative group(s) |
 of nodes...login, debug,
 batch, etc.)

Node is a single "machine," with a unique network name and address. In the IBM SP
environment, each node is a "symmetric multiprocessor" (SMP) that has four CPUs,
with shared memory and local disk space (but no memory is shared between nodes).

Pool is an administrative collection of nodes assigned by the SP system manager. Pools
separate nodes into disjoint sets, each of which is used for a specific computational
purpose (testing, batch runs, classes, etc.). On LC machines, the batch pool for
production runs is by far the largest pool of nodes.

POE User Guide - 6

Partition is the group of nodes on which your parallel program actually runs. Typically, at any
time multiple partitions are active for the jobs of multiple users spread across an SP
system. Theoretically, a node can be shared among several partitions (but this is most
likely only if a gang scheduler is enforcing time sharing on the system).

Home is the node where you log in and where you start your POE job (interactive use only).
A remote node is any nonhome node in your partition.

Job Manager is a service provided by LoadLeveler, IBM's batch scheduling software. LoadLeveler
communicates with your job's partition manager (next item) to find and allocate needed
nodes, to keep track of the switch, and to (optionally) enable jobs to use multiple
CPUs on the same node. (On LC's Linux clusters, this role is performed by SLURM
(URL: http://www.llnl.gov/LCdocs/slurm).)

Partition Manager

is a daemon process that resides on your home node, starts automatically whenever
you run an interactive POE job, and oversees its parallel execution. The partition
manager generally operates transparently to the user, and it performs such tasks as:

• Obtains the nodes needed to run your parallel job.

• Establishes socket connections with each node in your partition.

• Sets up your user environment (as you specified in environment variables or
command-line flags).

• Starts a process (called PMD) on each node in your partition. PMD interacts
with the partition manager and actually becomes the parent process of your
executable.

• Dynamically links your specified communications library to your executable.

• Loads your executable from the home node to each node in your partition.

• Routes STDIN, STDERR, and STDOUT on your home node to all other nodes
in your partition, and exchanges signal and other control information with the
PMD process on each node.

Protocol specifies how the tasks of your job communicate. There are two choices:

User Space is a fast method for intertask MPI communication, but can be used
only with the high-performance switch (often called US protocol).

Internet is a slower but more flexible method for intertask MPI
communication (can be used with network adapters besides the
high-performance switch (often called IP protocol)).

Node Allocation

is the process of (the job manager, LoadLeveler) selecting the nodes on which your
job will run. There are two choices:

POE User Guide - 7

http://www.llnl.gov/LCdocs/slurm

Nonspecific is the usual (and LC default) method of node allocation, in which
you allow the system to do all node selection. Nonspecific node
allocation is standard practice for batch jobs.

Specific enables you to explicitly choose which nodes will run your POE job
(by specifying a list of actual node names to use). Nonspecific node
allocation is preferred practice on LC machines.

POE User Guide - 8

Impact on Programming
POE imposes some constraints on every application programmer, and ignoring these restrictions can

cause your code to behave unpredicably or to fail unexplainably when it runs. The prime programming
constraints from POE include:

• You should let POE handle signals whenever possible. All compiler scripts link in POE's own signal
handlers, and these cover most signals that could cause program termination. POE uses its own signal
handlers so it can terminate entire parallel jobs in an orderly manner if one task fails, and so that it
can complete pending tasks (such as making trace files) successfully before terminating.

• POE requires special exit() and atexit() routines, so you should not code your own.

• You must pass to your program any string containing blanks by enclosing it in quotes and then
"escaping" each quote with a preceding backslash. For example:

 poe myprog \"this is one argument\"

• You should avoid large amounts of standard input or output because these can overload the partition
manager process on your home node by exhausting its buffers.

• The POE signal handlers will cause some system routines to fail if your program uses the MPI
signal-handling library. The following library and system calls will be interrupted and will not
complete normally:

 AIX msg routines
 accept
 aio_read/aio_write/aio_suspend
 connect
 exec/execv
 fork
 msem_lock/semop
 open/close/fopen/fclose
 pause
 poll
 recv/recvfrom/recvmsg
 select
 send/sendto/sendvmsg
 sleep/usleep/nsleep
 system

• If you use the MPI threaded library (now the default), you are responsible for insuring that other
linked libraries are thread safe and for making pthread.h the first include file.

• You must call MPI_INIT only once per task (not on each thread of that task), and you must call
MPI_FINALIZE on the same thread that called MPI_INIT.

• To see the current system-imposed (configuration) limits (for file size, data size, stack size, and
memory) on your programs on any LC IBM machine with POE, execute this reporting utility:

 ulimit -a

POE User Guide - 9

• If you use mathematical library LIBM, which IBM provides under AIX, you may be able to optimize
your code by instead using "tuned alternatives" to many LIBM functions from another library that
IBM calls the "Mathematical Acceleration Subsystem" or MASS (libmass.a). For details see IBM's
documentation at

http://techsupport.services.ibm.com/server/mass?fetch=home.html

POE User Guide - 10

http://techsupport.services.ibm.com/server/mass?fetch=home.html

Understanding SP Configuration
After preparing your parallel job but before compiling or running it, you should explore configuration

and job behavior on the SP system where you plan to work. The following sections suggest practical ways
to do this on LLNL's ASCI SP machines, which may differ significantly from SP systems used for other
purposes at other locations.

On every IBM SP system at LLNL is a plain text file called

 /usr/local/docs/job.limits

that you can view with MORE, MOLE, or any text editor. The format differs from one machine to another,
but this file always contains up-to-date technical details on system configuration for the specific machine
where it resides. Included are

• the available job pools and their differences,

• the maximum number of nodes and CPUs (which may vary by time of day or by job pool),

• the maximum number of active jobs in any state (per user),

• the maximum number of tasks currently allowed per job and per node, and

• the current theoretical and practical limits on memory per node on this machine.

The same job-limit data in a tabular summary that allows easy comparison among different machines
is available (with OTP authentication) at the OCF web site:

https://lc.llnl.gov/computing/status/limits.html

Besides such local (machine-specific) job limits, your job may encounter three broader, across-machine
"resource partition limits" enforced by the LC batch system (DPCS). See the "Resource Partition Limits"
section of LC's DPCS Reference Manual (URL: http://www.llnl.gov/LCdocs/dpcs) for an analysis of how
these limits can affect your job's scheduling in unpredictable ways (and for how PSTAT reports each one).
See the BRLIM section in the Bank and Allocation Manual (URL: http://www.llnl.gov/LCdocs/banks) for
tips on using the utility that reports these global, partition-wide job limits.

For dynamic reports on machine features and jobs, see the next subsection on "Local Reporting Tools."

POE User Guide - 11

https://lc.llnl.gov/computing/status/limits.html
http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/banks

Local Reporting Tools
Several utility programs (some SP standards and some local to LLNL's ASCI systems) provide up-to-date

online information on your system's computing environment, status, and configuration. Five of the most
useful tools are described in the following subsections, in the order in which you might typically run them
(JS, JU, JJ, LLSTATUS, and SPJSTAT).

JS (Pool Summary)

JS was developed at LLNL for the ASCI systems to summarize the current SP node pools. JS takes no
arguments, ends automatically, and reports

• The name of each pool (e.g., pdebug).

• The size of each pool (e.g., 8 nodes).

• The names of the nodes in each pool (e.g., blue337-344).

JU (Node Usage)

JU was developed at LLNL for the ASCI systems to summarize the current SP node usage and
availability. JU takes no arguments, ends automatically, and reports for each node pool on the SP system
(sequentially by pool name):

• The name of the pool.

• The total nodes in the pool.

• The number of nodes now declared down.

• The number of nodes now in use.

• The number of nodes still available.

• The names of jobs now running in that pool and the node count for each job (e.g., rrygi-48).

POE User Guide - 12

JJ (Job Features)

JJ takes no arguments, ends automatically, and reveals the existence and reports some of the
characteristics of every currently running job on the SP system, including both POE (interactive) and batch
(LoadLeveler) jobs. Job reports are sorted numerically by jobid, but note that JJ knows nothing about the
indentification numbers assigned by PSUB and reported by PSTAT for DPCS jobs, so it uses an entirely
different (nonDPCS) identifier for every job that it reports. For each current job, JJ lists

• Its own (nonDPCS) jobid.

• The job's owner (called "user").

• The date and time when the job started running.

• Whether the job is POE (interactive) or LoadLeveler (batch) managed.

• Whether the CPUs and network adapters used by the job are DEDICATED exclusively to it or
available to be SHARED by other jobs.

• How many nodes the job uses, and the names of those nodes (e.g., blue337-340).

LLSTATUS (Node Features)

LLSTATUS is a LoadLeveler command that reports the current features of every SP node, or optionally
reports just on specific nodes (if you supply their node names) or on specific features if you name the
features using the -f (fixed-length fields) or -r (variable-length fields) control options (see the LLSTATUS
man page for esoteric details). You execute LLSTATUS by typing

/usr/lpp/LoadL/full/bin/llstatus [-l] [nodenames]

where

-l reports a long list of node features (several dozen). The default is a short list of 9
features, including down/available status, active/idle status, current load average, and
operating system. Users of -l should probably redirect the LLSTATUS output to a
file because it will be very long.

nodenames is a blank-delimited list of target nodes on which to report. You can use the short
name (blue337) rather than the long name (blue337.pacific.llnl.gov) of any node. The
default (with no list of nodes) is a report on all nodes on the SP system, usually a very
long list.

POE User Guide - 13

SPJSTAT (Job Status)

SPJSTAT was developed at LLNL for the ASCI (IBM SP) systems and for the TC2K DEC/Compaq
cluster. SPJSTAT is intended to supplement PSTAT, LC's primary job-monitoring tool, by revealing more
about job/node interactions than appears in PSTAT reports. If run without arguments, SPJSTAT ends
automatically and reports for every (batch) job under DPCS control on the current cluster:

• The job's "native" (not DPCS/PSUB) identifier. On IBM SP systems, the native identifier is the
"LoadLeveler (LL) Batch ID" (of the form blue200.8392.0 rather than something like batch_6 or
jetjob24, as PSUB assigns and PSTAT reports). On TC2K, the native identifier is the job's "RMS
Resource ID."

• The (login) name of the job's owner.

• The number of nodes used (e.g., 16) and the name of the job's master node (e.g., blue341).

• The job's node pool (e.g., pbatch) and DPCS job class (e.g., normal).

• The job's current execution status (reported using one of these one- or two-letter codes, not DPCS
job-status descriptors as with PSTAT):

 C is in the process of being removed.
 H has been deferred (held).
 I is idle.
 NQ has not been queued to run.
 O has both a system and user hold.
 PM has been preempted.
 R is running now.
 S has been held by the system.
 ST is starting.
 U has been held by the user.
 W is waiting to run.

An alternative way to run SPJSTAT has the form:

spjstat nodes constraints
where

nodes specifies the number of nodes to be requested by a planned job (e.g., 12), and

constraints specifies any of the PSUB -c constraints to be requested for a planned job (e.g., bpool).

SPJSTAT interprets this execute line with arguments as a request to check if a planned job requiring
the specified nodes and constraints would actually run on the local system. It responds with a one-line
message of the form "This job would [not] run."

POE User Guide - 14

Establishing Authorization
For POE users, establishing authorization means insuring that you are permitted to run parallel jobs

on the nodes you intend to use. On some SP systems this requires a fair amount of personal preparation,
usually making and spreading appropriate .rhosts files to every node involved.

On LLNL's SP systems, however, AIX manages authorization and the system administrators have
already done all necessary preparation. You can examine the file /etc/hosts.equiv (by running MORE, for
example) on your SP login node and see a list of nodes (basically, all nodes) on which you have been
preauthorized to run jobs.

POE User Guide - 15

Compiling and Linking Parallel Programs

Relevant Compilers
POE provides parallel compiler scripts that automatically link in the necessary Parallel Environment

libraries and then call the appropriate serial or threaded AIX compiler. This simplifies your use of the
partition manager and the message-passing interface (MPI) library on LLNL's SP systems. Also, starting
in 2002 IBM keeps its compilers in /usr/local/bin rather than in /usr/bin, so avoiding absolute pathnames
when you invoke a compiler under AIX can avoid problems with unexpected compiler locations.

The chart below shows the most important compiler scripts, organized by type of program compiled,
available at LLNL. All of these compilers and scripts use the standard UNIX execute line sequence (name
of program to run, then blank-delimited, hyphen-flagged options if any, then name of the source file to
compile). Note that after January 26, 2000, the threaded MPI compilers became the default, so now all
MPI compilations are automatically threaded on all LLNL SP systems open and secure (e.g., for eventual
use with the gang scheduler).

Source
 to Compiler
Compile Invocation Role Clarified
------- ----------- --------------
serial xlc (or cc) ANSI standard C compiler
program xlC C++ compiler
 gcc-2.95.3 GNU C compiler compatible with Totalview
 xlf (or f77) Fortran 77 compatible code
 xlf90 Full Fortran 90 with IBM extensions

pthreads xlc_r same as above
program xlC_r but for parallel
 xlf_r programs that use
 xlf90_r ptheads

MPI with mpcc parallel C programs with MPI (script)
pthreads mpCC parallel C++ programs with MPI (script)
(*) mpxlf parallel Fortran 77 with MPI (script)

high- xlhpf high-performance Fortran 77
performance xlhpf90 high-performance Fortran 90
Fortran

(*)For MPI programs on LC's IBM machines, an alternative to using the native IBM compilers listed above
(mpcc, etc.) is using the corresponding vendor-neutral MPICH compiler (called mpicc, etc.). A plain text
file located on each machine at /usr/local/docs/MPI_Use_Summary gives the latest script names, version
numbers, and execute lines for the available MPICH tools.

POE User Guide - 16

Relevant Compiler Options
All of the IBM SP compilers share (roughly) the same control options, and the most relevant options

and their arguments are summarized in this section. See each compiler's MAN page for a complete list of
its more obscure options and arguments.

Furthermore, all of these compilers have locally specified default options, set by the system administrator.
The options you need most may have been already defaulted, so on each SP system you use you should
(use MORE, for example, to) examine the configuration file from this list that is relevant to your compiler
to discover the current local default options:

 /etc/xlC.cfg
 /etc/xlf.cfg
 /etc/xlhpf.cfg

(The poe.cfg configuration file used on some SP systems is disabled on those at LLNL.) Also, adequately
managing floating-point exceptions and related NaN ("not a number") situations on IBM SP machines
calls for quite a few strategic decisions about compiler options (like -qflttrap) and system calls (like fp_trap).
Consult the help file called /usr/local/docs/FPE_tips on each LC IBM system for a useful, detailed analysis
of your alternatives.

These compiler options are among the most useful (those that begin with the -q prefix are called
"keyword options," and they therefore may not fall where you expect in the alphabetical list):

-bmaxdata:bytes

specifies the data size if you expect to exceed the default data plus stack combination
of 256 Mbyte.

-bmaxstack:bytes

specifies the stack size if you expect to exceed the default data plus stack combination
of 256 Mbyte.

-c compiles only, without linking object files. The result is an output.o file.

-g generates the extra information needed by debuggers and some profiler tools.

-I dirname (uppercase eye) specifies a directory containing additional include files.

-L dirname (uppercase ell) specifies a directory (pathname) where additional libraries (named
with the -l option, below) reside.

-l key (lowercase ell) specifies additional libraries to be searched, where you insert the string
key and the compiler looks for a library called libkey.a.

-On (uppercase oh) selects a level of optimization, where n ranges from null (-O) for basic
optimization through 2 to 3 (-O3) for "aggressive" optimization and 4 (-O4) for
optimization tuned to the specific local platform.

POE User Guide - 17

-o (lowercase oh) specifies the name of the exectuable (a.out by default).

-p (also -pg) generates extra code to support profiling.

-qarch=arch specifies the architecture on which the executable will run, which can significantly
improve performance at the expense of portablity. Possible values for arch include
com (the default, which covers both POWER and PowerPC hardware), pwr (for
POWER), pwr2 (for POWER2), and pcc (for any 32-bit PowerPC). Another option,
called -qtune=arch, takes the same arguments as -qarch and serves just the same
purpose.

-qflttrap checks for floating-point exceptions and generates a SIGTRAP signal if one occurs
(but often with a high penalty on code performance). See the help file
/usr/local/docs/FPE_tips on each LC IBM SP machine for suggestions and alternatives.

-qlanglvl=level

specifies the language "level" (standard, standard subset, or standard superset) to
check against for conformance, where the choices are ansi, saa, saa12, extended, and
classic.

-qlist produces an object listing in the file output.lst.

-qsource produces a source listing in the file output.lst.

-qxref produces a cross-reference listing containing only referenced names.

POE User Guide - 18

Setting Up the Execution Environment
Under POE, your execution environment is managed by setting environment variables, as is typical on

UNIX systems:

• Some are general UNIX variables (e.g., PATH).

• Some are specific to POE (e.g., MP_NODES), and those virtually all begin with the MP_ prefix.

• Some are effective only in some run situations (interactive), but are automatically ignored in others
(batch). MP_RMPOOL is an example; others are marked with their description below.

• Some are enabled by LC's own Distributed Production Control System (such as PSUB_JOBID) to
provide a common environment for batch runs on any DPCS-managed LC machines (see the
"Environment Variables" section of the DPCS Reference Manual (URL:
http://www.llnl.gov/LCdocs/dpcs) for an explanatory list).

There are currently over 65 POE environment variables that influence the execution of your parallel
jobs, and more are added in every new SP version.

The subsections of this section tell how to set these environment variables, make explicit the local LC
default values, describe the role of the most important POE environment variables, and then summarize
others that are relevant but devoted to more obscure or exotic uses. Users concerned about
environment-variable differences (especially for switch or library control) between POE on IBM machines
and the locally modified version of Linux (called CHAOS) that runs on LC's large, Intel-chip Linux clusters
should check the environment-variable section of the manual CHAOS: Linux from Livermore. (URL:
http://www.llnl.gov/LCdocs/chaos) Additional environment variables specifically for job management and
resource allocation under Linux (CHAOS) are compared with their POE counterparts in the SLURM
Reference Manual. (URL: http://www.llnl.gov/LCdocs/slurm)

POE User Guide - 19

http://www.llnl.gov/LCdocs/dpcs
http://www.llnl.gov/LCdocs/chaos
http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/slurm

Setting POE Environment Variables
You set POE environment variables using the standard commands in both the C (or TCSH) shell,

namely

setenv varname varvalue
and in the the Bourne (or KSH) shell, namely

export varname=varvalue
.

You can set POE environment variables on any of four occasions:

• In response to any shell command prompt (e.g., just type: setenv MP_PROCS 64).

• By inserting commands within your shell's appropriate dot file (.cshrc or .profile).

• By running SOURCE on a script file before you execute your job (e.g., source myvars).

• By interspersing POE control flags with the arguments for your own program on its execute line,
where such flags are made by combining a hyphen with the name of the environment variable you
want to set (just the part following the MP_ prefix). For example, you can set the MP_PROCS
variable to 64 just for the duration of this job's run by typing

 myprogram -procs 64 -myopt inputfile

POE User Guide - 20

Local Defaults
SET BY DEFAULT.

To provide a consistent, reliable environment for jobs, LC sets many environment variables to "appropriate"
values by default on the production machines. On each machine, consult the file called /etc/environment
to see the current default settings of all environment variables, including many not closely related to POE
(such as the time zone). As a sample, the current POE environment variable values set by default on the
ASCI Blue IBM are:

 Variable Default value

 MP_COREFILE_SIGTERM no
 MP_CPU_USE unique
 MP_EUILIB us
 MP_HOSTFILE null
 MP_INFOLEVEL 1
 MP_LABELIO yes
 MP_RESD yes
 MP_SHARED_MEMORY yes
 MP_SYNC_ON_CONNECT no
 MP_TMPDIR /var/tmp

The role of (most of) these evironment variables is explained (alphabetically by name) in the next subsection.

IGNORED BY DEFAULT.
To understand your POE environment, you need to know about not only the variables set by default (above)
but also about the environment variables that have no effect on batch (LoadLeveler) jobs (those that are
ignored if you use them in a LoadLeveler job-control file). At LC, the following environment variables
are never used by LoadLeveler:

 MP_ADAPTER_USE
 MP_CPU_USE
 MP_EUIDEVICE
 MP_HOSTFILE
 MP_NODES
 MP_PMDSUFFIX
 MP_PROCS
 MP_RESD
 MP_RETRY
 MP_RETRYCOUNT
 MP_RMPOOL
 MP_SAVEHOSTFILE
 MP_TASKS_PER_NODE

POE User Guide - 21

Basic POE Environment Variables
There are many POE environment variables, but by setting just a few basic ones (for interactive jobs)

you can answer the three important questions:

• How many tasks/node (page 22) do I want?

• How will nodes be allocated (page 23) for my job?

• Which communications (page 24) protocol and network interface should I use?

Each subsection below describes the POE environment variables that answer one of these questions. A
final subsection shows how the variables are typically used in combination to declare a (nondefault)
operating environment for parallel jobs.

Tasks per Node

MP_PROCS (interactive jobs only) specifies the number of task processes for your parallel job
(and hence, at one task per node, the size of your job's node partition). You may use
MP_PROCS alone or with the other two variables in this section to specify how your
tasks are loaded onto the SP's physical nodes. The default value is 1; the maximum
varies from 128 to 2048 depending on the current version of POE (US protocol jobs
can have up to 1024 tasks/job, while IP protocol jobs can have up to 2048 tasks/job.
See the third subsection below on communications (page 24)).

MP_NODES (interactive jobs only) specifies the number of physical nodes on which to run your
job's parallel tasks. You may use MP_NODES alone or with the other two variables
in this section to specify how your tasks are loaded onto the SP's physical nodes.

MP_TASKS_PER_NODE

(interactive jobs only) specifies the number of tasks to run on each of the SP's physical
nodes (up to a maximum of four). You may use MP_TASKS_PER_NODE alone or
with the other two variables in this section to specify how your tasks are loaded onto
the SP's physical nodes, but obviously the values that you assign must together make
true the statement
MP_TASKS_PER_NODE * MP_NODES = MP_PROCS.

POE User Guide - 22

Node Allocation

MP_RESD (interactive jobs only) specifies whether or not LoadLeveler or the individual user
should allocate nodes to this job (ignored for batch jobs), where the choices are:

YES has LoadLeveler allocate the nodes (called nonspecific node
allocation, this is the default at LC).

NO has the user allocate the nodes (called specific node allocation, not
used on LC machines).

MP_RMPOOL

(interactive jobs only) when LoadLeveler performs nonspecific node allocation,
specifies the SP-system pool number from which the allocated nodes should be drawn.
Use the JS command (page 12) to discover the pool numbers (and names) currently
on your system.

MP_HOSTFILE

(not used on LC SP systems) specifies the name of a file that contains the domain
names of each node to use during specific node allocation (set to NULL by default
at LC).

POE User Guide - 23

Task Communications

MP_EUILIB specifies which of two protocols should be used for task communications, where the
choices are:

US selects User Space protocol, the default on LC SP systems, and the
faster of the two choices.

IP selects Internet Protocol.

MP_EUIDEVICE

(interactive jobs only) specifies which network adapter to use for communication
among the SP nodes, where the choices are:

css0 (css-zero) specifies the high-performance switch, the default value
on LC SP systems and the best choice for most jobs.

en0 (en-zero) specifies ethernet.

fi0 (fi-zero) specifies FDDI.

tr0 (tr-zero) specifies token ring.

POE User Guide - 24

Examples Using Basic POE Variables

POE environment variables are usually set in related groups to control the execution of interactive
parallel jobs. Here is a typical cluster of variables (set within the C shell) to perform nonspecific node
allocation of 4 tasks to any combination of nodes from one pool:

 setenv MP_PROCS 4
 setenv MP_RMPOOL 0

 setenv MP_RESD yes
 setenv MP_HOSTFILE "null"
 setenv MP_EUILIB us
 setenv MP_EUIDEVICE css0

Note that the last four settings (selecting User Space protocol and the high-performance switch) are LC
defaults that you therefore can omit.

Here is another example in which a cluster of POE environment variables performs nonspecific node
allocation of 4 physical nodes, each executing 4 tasks (to run 16 total tasks):

 setenv MP_NODES 4
 setenv MP_TASKS_PER_NODE 4
 setenv MP_RMPOOL 0

 setenv MP_RESD yes
 setenv MP_HOSTFILE "null"
 setenv MP_EUILIB us
 setenv MP_EUIDEVICE css0

Once again, the last four settings are defaults at LC.

POE User Guide - 25

Other POE Environment Variables
This list describes some potentially useful POE environment variables beyond the basic set covered in

the previous section. They appear in alphabetical order, with usage restrictions (e.g., interactive only) and
LC default values included whenever they apply. For an exhaustive (but hence confusing) annotated list
of every POE environment variable, see the open web page at:

http://www.llnl.gov/asci/platforms/bluepac/poe.envvars.html

See the Pthreads Overview (for LC) (URL: http://www.llnl.gov/LCdocs/pthreads) for advice on using
POSIX threads and the half dozen environment variables introduced here that tune pthreads performance
under POE.

AIXTHREAD_MINKTHREADS

overrides the AIXTHREAD_MNRATIO environment variable (next). This allows
you to manually specify the minimum number of active kernel threads (default follows
from MNRATIO). The library scheduler will not reclaim kernel threads below this
number.

AIXTHREAD_MNRATIO

specifies the ratio of pthreads (M) to kernel threads (N). AIXTHREAD_MNRATIO
is examined when the system creates a pthread to determine if a kernel thread should
also be created to maintain the correct ratio. You can set this environment variable
by supplying a value of the form

 p:k

where k is the number of kernel threads the system uses to handle p (user) pthreads.
You may specify any positive integer for p and k, but these values are used in a formula
that employs integer arithmetic and this results in the loss of some precision when
big numbers are specified. (See also AIXTHREAD_MINKTHREADS, above.)

Defaults:
If k is greater than p, the ratio is treated as 1:1.
If you specify no value, the default depends on the default contention scope.
If system scope contention is the default, the ratio is 1:1.
If process scope contention is the default, the ratio in 8:1.

AIXTHREAD_SCOPE

sets the contention scope of pthreads created using the default pthread attribute object
(for background on contention scope, see the "Alternative Thread Implementation
Models" section of the Pthreads Overview (for LC) (URL:
http://www.llnl.gov/LCdocs/pthreads). You can specify either of two exclusive values
for this variable:

P indicates process scope (the default).

POE User Guide - 26

http://www.llnl.gov/asci/platforms/bluepac/poe.envvars.html
http://www.llnl.gov/LCdocs/pthreads
http://www.llnl.gov/LCdocs/pthreads

S indicates system scope.

AIXTHREAD_SLRATIO

determines the number of kernel threads used to support local pthreads sleeping in
the library code while awaiting a pthread event, for example, attempting to obtain a
mutex (discussed in the "Synchronization" section of the Pthreads Overview (for LC)
(URL: http://www.llnl.gov/LCdocs/pthreads)). The reason to maintain kernel threads
for sleeping pthreads is that, when the awaited pthread event occurs, the pthread will
immediately need a kernel thread to run on. Using a kernel thread that is already
available is more efficient than creating a new kernel thread after the event has taken
place.

You can set this environment variable by supplying a value of the form

 k:p

where k is the number of kernel threads to reserve for every p sleeping (user) pthreads.
WARNING: the relative positions of k and p are reversed here from the ratio used to
assign a value to AIXTHREAD_MNRATIO. You may specify any positive integer
for p and k, but these values are used in a formula that employs integer arithmetic
and this results in the loss of some precision when big numbers are specified. (See
also AIXTHREAD_MINKTHREADS, above.)

Defaults:
If k is greater than p, the ratio is treated as 1:1.
If you specify no value, the default ratio is 1:12.

MP_ADAPTER_USE

(interactive jobs only) specifies whether or not your job is willing to share a node's
switch adapter with other jobs, where the choices are DEDICATED (the default at
LC and for all US communications) or SHARED (the nonLC default for IP
communications).

MP_CHILD is a read-only variable set by POE for each task to contain its unique taskid (0 through
MP_PROCS-1). Your batch script can query MP_CHILD to to discover the identity
of each task if needed.

MP_CMDFILE

specifies a POE commands file used to load programs onto the nodes of your partition
instead of accepting commands from UNIX standard input (any pathname is a valid
value). Generally, MP_CMDFILE is used only for multiple program multiple data
jobs (i.e., when MP_PGMODEL=mpmd).

POE User Guide - 27

http://www.llnl.gov/LCdocs/pthreads

MP_COREFILE_SIGTERM

(default is NO) prevents unexpected and undesirable core dumps that otherwise occur
when you kill a parallel job (using PRM) or when a parallel job exits by calling
MPI_Abort. Value YES allows such core dumps.

MP_CPU_USE

(interactive jobs only) specifies whether or not your job is willing to share a node's
CPU with other jobs, where the choices are UNIQUE (no node sharing, the default
at LC and in general for nonspecific node allocation of US communication jobs) or
MULTPLE (the nonLC default for IP jobs).

MP_EUIDEVICE

controls the checking that MPI does during program execution, which may be helpful
during program development. Valid values include YES, NO, DEBUG, and NOC,
where the last two toggle parameter checking and may significantly affect code
performance.

MP_INFOLEVEL

specifies the level of messages reported as an aid to debugging, where the choices
are
0 (error messages only),
1 (warning and error, the default at LC),
2 (informational, warning, and error),
3 (above plus diagnostic),
4, 5, 6 (above plus more elaborate diagnostic messages used by the IBM Support
Center).

MP_LABELIO

specifies whether or not output from the parallel tasks is labeled by taskid, where the
choices are YES (the default at LC) or NO.

MP_PGMODEL

specifies your programming model, where the choices are SPMD (single program
multiple data, the default) or MPMD (multiple program multiple data, which enables
you to load different executables individually on different nodes of your partition
usually by using MP_CMDFILE to specify a suitable command file).

MP_RETRY (interactive jobs only) specifies the period (in seconds) between processor node
allocation retries if there are not enough processor nodes immediately available.

MP_RETRYCOUNT

(interactive jobs only) specifies the number of times that the Partition Manager will
attempt to allocate processor nodes before returning without running your program.

POE User Guide - 28

MP_SAVEHOSTFILE

(interactive jobs only) specifies the name of a file to be created by the Partition
Manager and used to store the names of the hosts on which your POE job actually
ran (a possible aid for debugging).

MP_SHARED_MEMORY

specifies whether tasks running on the same node should use shared memory (yes,
the default) or the SP switch (no) for MPI message passing. Shared memory is faster
for some codes, but the overhead may decrease the performance of others.

MP_SINGLE_THREAD

is an MPI library optimization flag. The choices are NO (the LC default), which
assumes multiple message-passing threads and can improve library performance, or
YES, which prevents your program from using MPI-IO.

MP_STDOUTMODE

manages the standard output from your parallel tasks, where the choices are
UNORDERED (the default, and often required if you want to see the prompts from
an interactive program as it runs, this has all tasks write output data to STDOUT
asychronously) or ORDERED (this has each task write its output to its own buffer,
then later flushes all task buffers in task order to STDOUT).

MP_SYNC_ON_CONNECT

reveals nodes or tasks that cannot communicate (by trying an all-to-all synchronization
as soon as the MPI library initializes, and looking for error messages about
nonresponding tasks). But for large task counts setting this to yes (previous LC default)
sometimes caused a timeout and job failure right at the start. LC now speeds job
startup by setting MP_SYNC_ON_CONNECT=no by default.

MP_TIMEOUT

(no corresponding command-line flag) specifies how long (any time interval greater
than 0.15 seconds) POE waits before abandoning an attempt to connect to remote
nodes, and how long the communication subsystem waits for a connection to open
during message-passing initiation (see MP_SYNC_ON_CONECT above). With the
"DCE and compatibility" SP security method, you may need to increase
MP_TIMEOUT to allow time for the DCE servers to respond.

MP_TMPDIR specifies the location of temporary disk space for your job (the default at LC is
/var/tmp, or /usr/tmp, which is just a link to /var/tmp).

MP_WAIT_MODE

specifies how a blocking MPI process will share computing resources, where the
possible values are:

POE User Guide - 29

POLL (default) has the receiving thread actively poll for incoming
messages. If tasks for several distinct jobs share a node, this might
not be the best choice.

SLEEP has the receiving thread "sleep," and thus remove itself from the
active dispatching queue if it has no work to do.

YIELD has the receiving thread stay in the queue but yield the processor if
it has no work to do.

PCS_TMPDIR

(optional, if enabled by system administrator) not strictly speaking a POE variable,
but available as a convenience to POE jobs, this contains the location (if any) of a
specific temporary directory that is automatically created by DPCS for each batch
job when the job begins and is automatically purged as soon as the batch job ends.

RT_GRQ specifies whether the run queues for threads are assigned to a specific processor (off,
the default) or managed globally (on). Some codes run faster if you switch this variable
to ON (try comparative tests first).

SPINLOOPTIME

(no default) specifies the number of times that the system will try to get a busy lock
without taking a secondary action, such as calling the kernel to yield the processor.
Manipulating SPINLOOPTIME can be helpful on SMP systems, where the lock might
be held by another actively running pthread and will soon be released. On uniprocessor
systems this value is ignored.

YIELDLOOPTIME

(no default) specifies the number of times that the system yields the processor when
trying to acquire a busy mutex or spin lock (see the "Synchronization" section of the
Pthreads Overview (for LC) (URL: http://www.llnl.gov/LCdocs/pthreads) for details)
before going to sleep on the lock. YIELDLOOPTIME can be helpful for complex
applications where multiple locks are in use.

POE User Guide - 30

http://www.llnl.gov/LCdocs/pthreads

Running Under POE

Execute Lines
(For an explanation of the corresponding job-run alternatives on LC's Linux (CHAOS) clusters, see

the SRUN subsections of the SLURM Reference Manual (URL: http://www.llnl.gov/LCdocs/slurm).)

BATCH PARALLEL EXECUTION.
Most large parallel jobs run in batch mode, supervised by LC's Distributed Production Control System
(DPCS/LCRM). This provides many automatic job scheduling and logging benefits, and makes the large
PBATCH node pool available to the job's parallel tasks. See the EZJOBCONTROL Basic Guide (URL:
http://www.llnl.gov/LCdocs/ezjob) and the DPCS Reference Manual (URL:
http://www.llnl.gov/LCdocs/dpcs) for instructions on using LC's batch system effectively. IBM SP batch
jobs are now scheduled by node pool rather than by job class (to support gang scheduling), a technical
difference from other LC machines that most users should not notice. Remember also that on LC machines
many POE environment variables are ignored by default during batch runs, so check the list of default
settings (page 21) above before you spend time pointlessly trying to use them when they have no effect.
(PSUB's former -noDFS option, once needed to avoid confusing warnings on some POE machines, became
obsolete and irrelevant in January, 2003.)

INTERACTIVE PARALLEL EXECUTION.
Once you have written your program, compiled it, and set up the appropriate parallel environment using
the POE variables, you can run it interactively simply by typing the name of the executable file. If you
wish to set (or change) the values of some POE environment variables at run time, and just for the duration
of the current run, you can use POE control flags on the execute line. Each POE control flag is made by
combining a hyphen with the name of the environment variable you want to set (just the part following
the MP_ prefix). For example, you can set the MP_PROCS variable to 64 just for the duration of this job's
run by using the POE flag

 -procs 64

These POE flags can be interspersed among the arguments of your own program, so that the general
execute-line syntax becomes

executablename POE-control-flags your-arguments

and a typical example of using this feature is

 myprogram -procs 64 -myopt inputfile

POE User Guide - 31

http://www.llnl.gov/LCdocs/slurm
http://www.llnl.gov/LCdocs/ezjob
http://www.llnl.gov/LCdocs/dpcs

DISTRIBUTED SERIAL EXECUTION.
To run a serial program (your own or a standard UNIX tool) across every node in your job's partition, use
the special POE command that is literally called "poe," followed by the usual serial execute line (with its
usual arguments, if any). Typical examples include:

 poe myserialprog
 poe cp ~/input.file /var/tmp/input.file

PARALLEL FILE SYSTEMS.
If you make use of the parallel file systems unique to each LC POE (AIX) machine (called /p/gb1, etc.),
you may need to coordinate your disk space needs with other users on the same machine. Every LC AIX
machine therefore offers a system file called /usr/local/etc/pfs_status.machinename that reports for each
available parallel file system its current total size, space already used, percentage used, percentage of
possible inodes (roughly, files) used, and an ordered list of users and their current space usage (in both
Tbytes and number of files).

Job Termination
For parallel BATCH jobs, DPCS handles job termination and error tracking. For parallel INTERACTIVE

jobs that you run under POE, you can terminate the job (prematurely) in either of two ways.

First, you can terminate a running, interactive POE job by typing CRTL-C. This sends a SIGTERM
signal to your home node's Partition Manager process, which in turn sends the termination signal to all
remote tasks associated with that job. WARNING: type CTRL-C only once. Multiple CTRL-Cs may kill
the Partition Manger itself, before it completes the shutdown of your remote processes. This can allow
some of your processes to continue on remote nodes, tying up both those nodes and their switch adapters.
These nodes will then remain unavailable for other jobs because LoadLeveler will think that you still need
them.

Second, you can also invoke the POEKILL command to safely terminate all of your interactive POE
tasks without typing CTRL-C. You execute POEKILL and use POE to distribute it among all nodes in
your job's partition using the ususal syntax, namely:

 poe poekill yourprog -procs n -hostfile hlist

where n is the number of task processes in your parallel job and hlist is the name of a file containing a list
of all the nodes where your tasks are running. POEKILL is seldom needed to terminate jobs at LC.

POE User Guide - 32

Pitfalls
New versions of AIX or other system changes sometimes bring with them unexpected or easily

overlooked pitfalls that thwart effective use of POE. This section catalogs the known POE pitfalls as an
aid to avoiding them, or at least debugging them aferwards.

AIX 5.1/4.3 INCOMPATIBILITIES.
LC installed AIX version 5.1 on all of its production IBM machines between the summer of 2002 and
March, 2003. Because of changes in the mpich.h header file and in the MPI libraries beween versions,
MPI codes compiled or linked under AIX 5.1 will not work properly if run under AIX 4.3 (elsewhere).
Likewise, 64-bit code compiled or linked under AIX 5.1 will not run under AIX 4.3 (and conversely, 64-bit
code compiled or linked under AIX 4.3 will not run under AIX 5.1).

KCC LINK PROBLEMS.
The newmpKCC and newmpKCC_r compilers (both version 4.0f of KCC) on IBM AIX systems normally
link to a shared library version of the KCC C++ library. This library conflicts with the IBM C++ shared
library used by the MPI implementation under AIX 5.1. The typical result is illegal-instruction errors when
your application uses COUT, CERR, or CLOG, or when MPI uses these routines in MPI_Finalize.

The workaround is to link to KCC's C++ library statically, by relinking with the option

 --static_libKCC

added to your newmpKCC link execute line. Only relinking (not recompiling) is needed. The linker will
emit a large number of "duplicate symbol" warnings for the C library, which tests have shown to be harmless
for application codes under both AIX 5.1 and AIX 4.3. Note that this is a run-time problem, so codes
executed on any AIX 5.1 system will need to be relinked with the static option above even if the link was
originally done on an AIX-4.3 system.

OPEN/SECURE NETWORK TEST.
If you need your code to behave differently under AIX depending on its network environment (OCF or
SCF), you can now query a line in the system file called /etc/home.config to discover the current
environment. Every LC machine (including all AIX machines) offers a public /etc/home.config file, in
which one line contains the keyword NETWORK (in uppercase) followed by one of two network values
(ocf or scf, in lowercase). Your code can reveal the content of this line, for use in conditional tests, by
executing

grep NETWORK /etc/home.config

AVOIDING BIG PROFILER OVERHEAD.
Once you start testing an MPI-based parallel version of your code, you can benefit from using mpiP, a
"lightweight profiling library" specifically for MPI applications. The mpiP profiler on LC's AIX (IBM)
machines:

• has been customized to handle long file names and function names,

• generates much less overhead, less between-task communication, and less total data than most
heavy-duty tracing tools, and

• has a local documentation file available on each AIX node at /usr/local/tools/mpiP/README.
POE User Guide - 33

Parallel Performance Benchmarks
SPHINX:

LLNL's Center for Applied Scientific Computing (CASC) now provides as publicly downloadable code
a C-language integrated microbenchmark suite to conduct performance tests of every major variety of
parallelized program on many different platforms (DEC/Compaq, IBM, SGI, and Sun). LLNL's parallel
benchmark suite, called Sphinx, has these features:

• Accesses each test action (such as message pingpong) through a function pointer, allowing different
threads or tasks to execute different functions at once. This supports measurement of highly complex
parallel actions.

• Times repeated calls (iterations) of each test action, stopping either when the standard deviation of
the repetitions becomes less than a user-specified percentage of their mean or, if that never happens,
after a user-specified maximum number of repetitions.

• (Optionally) corrects for test-suite ("harness") overhead and automatically warns if that overhead
exceeds the measurement value of the test.

• Is highly portable (vendor-dependent binding of POSIX threads (pthreads) to processors is the chief
threat to Sphinx portability).

• Covers (with suitable adaptations) pthreads (within-process parallelization), MPI (among-process
parallelization), and OpenMP performance testing. Documentation at the Sphinx web site (below)
specifically explains which tests apply to which features of the three approaches to parallelization.

Sphinx is available to the public at this open URL:

http://www.llnl.gov/CASC/sphinx

This Sphinx web site (UCLR-CODE-99026) provides all needed usage information and relevant files,
including:

• A descriptive inventory of every file in the current Sphinx distribution, which includes every input
file for the ASCI milepost tests.

• Build and execution instructions for the test suite.

• Input file format and the input modes that Sphinx accepts.

• Output file format and the four Sphinx output streams.

• Specific test descriptions and allowed independent variables.

• References to (and in some cases even the full text of) published papers that present and discuss
Sphinx results.

POE User Guide - 34

http://www.llnl.gov/CASC/sphinx

IBM PERFORMANCE PROBLEMS:
As of April, 2002, LC's massively parallel IBM computers sometimes showed significant performance
problems for MPI programs, especially for those programs that (heavily) use library routines
MPI_ALLREDUCE or MPI_BARRIER. One production physics code where MPI_ALLREDUCE was
algorithmically expected to use about 1.9% of the total run time, for example, actually spent 90% of its
MPI time and 30% of its physics time just executing MPI_ALLREDUCE. Extensive comparative testing
by LC staff members suggests that the following kinds of codes are most susceptible to these serious
performance problems:

• Parallel codes with fine-grained parallelization,

• Hybrid codes that combine MPI with OpenMP or with POSIX threads (Pthreads), and

• Codes that make heavy use of MPI_ALLREDUCE or MPI_BARRIER.

Users who see (or who wish to avoid) these problems are urged to profile their codes by running
/usr/local/mpiP and to read the "IBM Confidential" analysis available at (OCF, special password required,
request from the LC Hotline):

http://www-r.llnl.gov/icc/viewgraphs/viewgraphs02/apr02/jones/index.htm

for more details and for a few suggestions to work around these problems. By summer, 2003, IBM and
LLNL staff had agreed that latent serial steps deep within AIX parallel operations were a primary cause
of these performance problems. For an updated analysis and repair strategy, see

http://www-r.llnl.gov/icc/viewgraphs/viewgraphs03/aug/jones/jones.pdf

POE User Guide - 35

http://www-r.llnl.gov/icc/viewgraphs/viewgraphs02/apr02/jones/index.htm
http://www-r.llnl.gov/icc/viewgraphs/viewgraphs03/aug/jones/jones.pdf

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes.
(C) Copyright 2004 The Regents of the University of California. All rights reserved.

POE User Guide - 36

Keyword Index
To see an alphabetical list of keywords for this document, consult the next section (page 38).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where these programs run.
who Who to contact for assistance.

introduction Role and goals of this document.
poe-parts Software components of POE.
poe-roles Tasks that POE performs.

terminology Parallel terms defined, diagramed.

poe-constraints POE constraints on app programs.

configuration LC's machine configuration(s).
reporting-tools Local SP config reporting tools.

js JS summarizes node pools.
ju JU summarizes current node usage.
jj JJ summarizes current job features.
llstatus LLSTATUS reports node properties.
spjstat SPJSTAT reports job status, node use.

authorization How LC (pre)authorizes node use.

compiling Compiling parallel programs at LC.
compilers Relevant LC parallel compilers compared.
compiler-options Relevant LC compiler options compared.

environment LC's parallel execution environment.
setting-variables Ways to set POE environment variables.
default-variables LC's defaults for POE env. variables.
basic-variables Most important POE variables explained.

task-variables How tasks are loaded onto nodes.
allocation-variables Which nodes are allocated to jobs.
communication-variables How job tasks will communicate.
example-variables Sample joint use of POE env. variables.

advanced-variables Useful but exotic POE vars. explained.

poe-usage Running interactive POE jobs.
poe-execute-lines How to run parallel and serial jobs.
job-termination How to stop parallel jobs.
pitfalls Known POE/AIX problems noted.

benchmarks Sphinx benchmark codes for MPI, pthreads.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

POE User Guide - 37

Alphabetical List of Keywords

Keyword Description
------- -----------

a The alphabetical index of keywords.
advanced-variables Useful but exotic POE vars. explained.
allocation-variables Which nodes are allocated to jobs.
authorization How LC (pre)authorizes node use.
availability Where these programs run.
basic-variables Most important POE variables explained.
benchmarks Sphinx benchmark codes for MPI, pthreads.
communication-variables How job tasks will communicate.
compiler-options Relevant LC compiler options compared.
compilers Relevant LC parallel compilers compared.
compiling Compiling parallel programs at LC.
configuration LC's machine configuration(s).
date The latest changes to this document.
default-variables LC's defaults for POE env. variables.
entire This entire document.
environment LC's parallel execution environment.
example-variables Sample joint use of POE env. variables.
index The structural index of keywords.
introduction Role and goals of this document.
jj JJ summarizes current job features.
job-termination How to stop parallel jobs.
js JS summarizes node pools.
ju JU summarizes current node usage.
llstatus LLSTATUS reports node properties.
pitfalls Known POE/AIX problems noted.
poe-constraints POE constraints on app programs.
poe-execute-lines How to run parallel and serial jobs.
poe-parts Software components of POE.
poe-roles Tasks that POE performs.
poe-usage Running interactive POE jobs.
reporting-tools Local SP config reporting tools.
revisions The complete revision history.
scope Topics covered in this document.
setting-variables Ways to set POE environment variables.
spjstat SPJSTAT reports job status, node use.
task-variables How tasks are loaded onto nodes.
terminology Parallel terms defined, diagramed.
title The name of this document.
who Who to contact for assistance.

POE User Guide - 38

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
02Mar04 default-variables
 MP_COREFILE_SIGTERM added.

advanced-variables
 MP_COREFILE_SIGTERM explained.

27Oct03 introduction Cross ref to SLURM manual added.
environment Comparison with SLURM vars. noted.
poe-usage Comparison with SRUN usage noted.

03Sep03 benchmarks More on MPI performance problem.
pitfalls Lightweight profiler mpiP noted.

24Jun03 poe-constraints
 MASS supplements LIBM.

poe-execute-lines
 Usage info for parallel file systems.

pitfalls OCF/SCF network test explained.

12Mar03 introduction Cross ref to CHAOS manual added.
environment Cross ref to CHAOS manual added.
pitfalls New section on known problems.
index New keyword for new section.

21Jan03 environment Special PSUB batch variables noted.
configuration Limits reporting clarified.
poe-usage Former -noDFS option now obsolete.

19Aug02 compilers Warning to avoid absolute pathnames.
compiler-options

 QFLTTRAP and FPE_tips added.
default-variables

 POE default settings updated.
advanced-variables

 MP_SINGLE_THREAD added.

08May02 benchmarks MPI/pthreads performance problem.

23Apr02 compilers GNU GCC added.
configuration Resource partition limits explained.

16Jan02 introduction Finnish SP manual cited.
poe-constraints

 ULIMIT report added.

26Nov01 introduction AIX/Linux differences noted.

16Oct01 compilers Local MPICH instructions referenced.
task-variables Details of use clarified.
advanced-variables

 Details clarified, 1 more added.
poe-usage Warning added on ignored e.v.'s.

POE User Guide - 39

23Jul01 advanced-variables
 Several LC default values changed.
 RT_GRQ added.

12Jun01 poe-usage PSUB -noDFS now OCF default.
benchmarks New section on parallel benchmarks.
index New keyword for new section.

22Feb01 advanced-variables
 Six pthreads env vars added.

09Jan01 spjstat New section on job-reporting tool.
advanced-variables

 PCS_TMPDIR variable added.
configuration job.limits file noted.
poe-usage Node pool role noted.
index New keyword for new section.

26Oct00 poe-usage Role of -noDFS PSUB option noted.

05Sep00 introduction Cross ref to IBM Doc Dir added.
advanced-variables

 Exhaustive var list cross referenced.

19Apr00 availability New print instructions.
default-variables

 MP_SYNC_ON_CONNECT added.
advanced-variables

 MP_SYNC, MP_SHARED_MEMORY added.

15Feb00 entire First edition of POE User Guide.

TRG (02Mar04)

UCRL-WEB-201527
LLNL Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (02Mar04) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

POE User Guide - 40

http://www.llnl.gov/disclaimer.html

